Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Environ Res ; 204(Pt B): 112071, 2022 03.
Article in English | MEDLINE | ID: covidwho-1433207

ABSTRACT

There is an increasing evidence that meteorological (temperature, relative humidity, dew) and air quality indicators (PM2.5, PM10, NO2, SO2, CO) are affecting the COVID-19 transmission rate and the number of deaths in many countries around the globe. However, there are contradictory results due to limited observations of these parameters and absence of conclusive evidence on such relationships in cold or hot arid tropical and subtropical desert climate of Gulf region. This is the first study exploring the relationships of the meteorological (temperature, relative humidity, and dew) and air quality indicators (PM10,CO, and SO2) with daily COVID-19 infections and death cases for a period of six months (1st March to August 31, 2020) in six selected cities of the Kingdom of Saudi Arabia by using generalized additive model. The Akaike information criterion (AIC) was used to assess factors affecting the infections rate and deaths through the selection of best model whereas overfitting of multivariate model was avoided by using cross-validation. Spearman correlation indicated that exponentially weighted moving average (EWMA) temperature and relative humidity (R > 0.5, P < 0.0001) are the main variables affecting the daily COVID-19 infections and deaths. EWMA temperature and relative humidity showed non linear relationships with the number of COVID-19 infections and deaths (DF > 1, P < 0.0001). Daily COVID-19 infections showed a positive relationship at temperature between 23 and 34.5 °C and relative humidity ranging from 30 to 60%; a negative relationship was found below and/or above these ranges. Similarly, the number of deaths had a positive relationship at temperature ˃28.7 °C and with relative humidity ˂40%, showing higher number of deaths above this temperature and below this relative humidity rate. All air quality indicators had linear relationships with the number of COVID-19 infections and deaths (P < 0.0001). Hence, variation in temperature, relative humidity and air pollution indicators could be important factors influencing the COVID-19 spread and mortality. Under the current scenario with rising temperature and relative humidity, the number of cases is increasing, hence it justifies an active government policy to lessen COVID-19 infection rate.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/statistics & numerical data , Cities , Humans , Humidity , Quality Indicators, Health Care , SARS-CoV-2 , Saudi Arabia/epidemiology , Temperature
2.
Pathogens ; 9(12)2020 Nov 26.
Article in English | MEDLINE | ID: covidwho-945902

ABSTRACT

The COVID-19 pandemic is responsible for an unprecedented disruption to the healthcare systems and economies of countries around the world. Developing novel therapeutics and a vaccine against SARS-CoV-2 requires an understanding of the similarities and differences between the various human coronaviruses with regards to their phylogenic relationships, transmission, and management. Phylogenetic analysis indicates that humans were first infected with SARS-CoV-2 in late 2019 and the virus rapidly spread from the outbreak epicenter in Wuhan, China to various parts of the world. Multiple variants of SARS-CoV-2 have now been identified in particular regions. It is apparent that MERS, SARS-CoV, and SARS-CoV-2 present with several common symptoms including fever, cough, and dyspnea in mild cases, but can also progress to pneumonia and acute respiratory distress syndrome. Understanding the molecular steps leading to SARS-CoV-2 entry into cells and the viral replication cycle can illuminate crucial targets for testing several potential therapeutics. Genomic and structural details of SARS-CoV-2 and previous attempts to generate vaccines against SARS-CoV and MERS have provided vaccine targets to manage future outbreaks more effectively. The coordinated global response against this emerging infectious disease is unique and has helped address the need for urgent therapeutics and vaccines in a remarkably short time.

SELECTION OF CITATIONS
SEARCH DETAIL